Minimum Unbalanced Displacement Norm
$dlambda1 < $Jd $minLambda $maxLambda > integrator MinUnbalDispNorm
|
first load increment (pseudo-time step) at the first iteration in the next invocation of the analysis command. |
|
factor relating first load increment at subsequent time steps (optional, default: 1.0) |
$minLambda, $maxLambda |
arguments used to bound the load increment (optional, default: $dLambda1 for both) |
Examples
0.1; integrator MinUnbalDispNorm
"integrator": ["MinUnbalDispNorm", 0.1]}; {
Theory
Continuation
In this instance, the constraint equation involving \(\Delta \lambda_i^j\) is \[ \frac{\partial}{\partial \Delta \lambda_i^j}\left[\{\Delta u\}_i^{j} \cdot \{\Delta \delta\}_i^j\right]=0 \]
which guarantees a minimum value for the unbalanced displacement norm in each iteration. Expanding \(\{\Delta \delta\}_i^j\) as defined in equation (9) and evaluating equation (28) furnishes \[ \Delta \lambda_i^j=\frac{-\left\{\delta_1\right\}_i^{\mathrm{T}}\left\{\Delta \delta_{\mathrm{R}}\right\}_i^j}{\left\{\delta_1\right\}_i^{\mathrm{T}}\left\{\delta_{\mathrm{I}}\right\}_i} \]
Incrementation
The load increment at iteration \(i\), \(d\lambda_{1,i}\) , is related to the load increment at \((i-1)\), \(d\lambda_{1,i-1}\), and the number of iterations at \((i-1)\), \(J_{i-1}\), by the following:
\[ d\lambda_{1,i} = d\lambda_{1,i-1}\frac{J_d}{J_{i-1}} \]
Code Developed by: fmk