Force-Based Beam-Column
This command is used to construct a forceBeamColumn element object, which is based on the iterative force-based formulation. A variety of numerical integration options can be used in the element state determination and encompass both distributed plasticity and plastic hinge integration. See image:IntegrationTypes.pdf for more details on the available numerical integration options.
Model.element(“forceBeamColumn”, name, nodes, geom, integration, cMass)
nodes |
[iNode,jNode] ,
| |||||||
geom |
Ref(geomTransf)
|
|||||||
integration |
BeamInt
|
|||||||
cMass = False |
bool
|
Flag indicating whether to use consistent mass matrix. | ||||||
mass = 0.0 |
float
|
element mass per unit length |
Original command that assumes Gauss-Lobatto integration with a copy of the same section force-deformation model at each integration point:
$eleTag $iNode $jNode
element forceBeamColumn $numIntgrPts $secTag $transfTag < -mass $massDens > < -iter
$maxIters $tol > < -integration $intType >
eleTag
|
unique element object tag |
numIntgrPts
|
number of Gauss-Lobatto integration points along the element. |
secTag
|
identifier for previously-defined section object |
Alternative command (kept for backward compatability):
$eleTag $iNode $jNode
element nonlinearBeamColumn $numIntgrPts $secTag $transfTag < -mass $massDens >
-iter $maxIters $tol > < -integration $intType > <
eleTag
|
unique element object tag |
intType
|
numerical integration type, options are Lobatto, Legendre, Radau, NewtonCotes, Trapezoidal (optional, default= Lobatto) |
NOTE:
The following three commands give the same element definition (with Gauss-Lobatto integration) despite some apparent permutations of the input arguments:
- element forceBeamColumn $eleTag $iNode $jNode $transfTag Lobatto $secTag $numIntgrPts
- element forceBeamColumn $eleTag $iNode $jNode $numIntgrPts $secTag $transfTag
- element nonlinearBeamColumn $eleTag $iNode $jNode $numIntgrPts $secTag $transfTag
Notes
The
-iter
switch enables the iterative form of the flexibility formulation. Note that the iterative form can improve the rate of global convergence at the expense of more local element computation.The valid response elements that an element of this type will respond to are:
force
orglobalForce
localForce
basicForce
section $sectionNumber $arg1 $arg2 ...
(note:sectionNumer
is integer 1 throughnumIntegrPts
)basicDeformation
plasticDeformation
inflectionPoint
tangentDrift
integrationPoints
integrationWeights
Here is a link to the source code to obtain information about the location and weight of the Gauss-Lobatto integration points 1
Examples
force beam column element added with tag 1 between nodes 2 and 4 that has Gauss-Lobatto 5 integration points, each using section 8, and the element uses geometric transformation 9
1 2 4 9 Lobatto 8 5; element forceBeamColumn
FURTHER DOCUMENTATION ON INTEGRATION OPTIONS:
References
- Neuenhofer, Ansgar, FC Filippou. Geometrically Nonlinear Flexibility-Based Frame Finite Element. ASCE Journal of Structural Engineering, Vol. 124, No. 6, June, 1998. ISSN 0733-9445/98/0006-0704-0711. Paper 16537. pp. 704-711.
- Neuenhofer, Ansgar, FC Filippou. Evaluation of Nonlinear Frame Finite-Element Models. ASCE Journal of Structural Engineering, Vol. 123, No. 7, July, 1997. ISSN 0733-9445/97/0007-0958-0966. Paper No. 14157. pp. 958-966.
- Neuenhofer, Ansgar, FC Filippou. ERRATA – Geometrically Nonlinear Flexibility-Based Frame Finite Element. ASCE Journal of Structural Engineering, Vol. 124, No. 6, June, 1998. ISSN 0733-9445/98/0006-0704-0711. Paper 16537. pp. 704-711.
- Taucer, Fabio F, E Spacone, FC Filippou. A Fiber Beam-Column Element for Seismic Response Analysis of Reinforced Concrete Structures. Report No. UCB/EERC-91/17. Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley. December 1991.
- Spacone, Enrico, V Ciampi, FC Filippou. A Beam Element for Seismic Damage Analysis. Report No. UCB/EERC-92/07. Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley. August 1992.
Code maintained by: Michael H. Scott, Oregon State University