J2 Plasticity Material
This command is used to construct an multi dimensional material object that has a von Mises (J2) yield criterium and isotropic hardening.
$matTag $K $G $sig0 $sigInf $delta $H nDMaterial J2Plasticity
matTag
|
integer tag identifying material |
K
|
bulk modulus |
G
|
shear modulus |
sig0
|
initial yield stress |
sigInf
|
final saturation yield stress |
delta
|
exponential hardening parameter |
H
|
linear hardening parameter |
The material formulations for the J2 object are
"ThreeDimensional"
, "PlaneStrain"
,
"Plane Stress"
, "AxiSymmetric"
and
"PlateFiber"
.
Theory
The theory for the non hardening case can be found http://en.wikipedia.org/wiki/Von_Mises_yield_criterion
\(J_2\) isotropic hardening material
Elastic Model \[\sigma = K \operatorname{tr}(\epsilon_e) + 2G \operatorname{dev}(\epsilon_e)\]
Yield Function \[\phi(\sigma, q) = \| \operatorname{dev}(\sigma) \| - \sqrt{\tfrac{2}{3}} q(\xi)\]
Saturation Isotropic Hardening with linear term
\[q(\xi) = \sigma_0 + (\sigma_\inf - \sigma_0) \exp(-delta \xi) + H \xi \]
Flow Rules \[\dot {\epsilon_p} = \gamma \frac{\partial \phi}{\partial \sigma} \]
\[\dot \xi = -\gamma \frac{\partial \phi}{\partial q}\]
Linear Viscosity ( if \(\phi \gt 0\) )
\[\gamma = \frac{\phi}{\eta}\]
Backward Euler Integration Routine Yield condition enforced at time \(n+1\)
- set \(\eta = 0\) for rate independent case
Code developed by: Ed Love